PART VI INTERNET PROTOCOL: CONNECTIONLESS DATAGRAM DELIVERY

Internet Protocol

- One of two major protocols in TCP/IP suite
- Major goals
 - Hide heterogeneity
 - Provide the illusion of a single large network
 - Virtualize access

The Concept

IP allows a user to think of an internet as a single virtual network that interconnects all hosts, and through which communication is possible; its underlying architecture is both hidden and irrelevant.

Internet Services And Architecture Of Protocol Software

APPLICATION SERVICES

RELIABLE TRANSPORT SERVICE

CONNECTIONLESS PACKET DELIVERY SERVICE

Design has proved especially robust

IP Characteristics

- Provides connectionless packet delivery service
- Defines three important items
 - Internet addressing scheme
 - Format of packets for the (virtual) Internet
 - Packet forwarding

Internet Packet

- Analogous to physical network packet
- Known as IP datagram

IP Datagram Layout

DATAGRAM HEADER DATAGRAM DATA AREA

- Header contains
 - Source Internet address
 - Destination Internet address
 - Datagram type field
- Payload contains data being carried

Datagram Header Format

0	4	8	16	19	24	31	
VERS	HLEN	TYPE OF SERVICE		TOTAL	LENGTH		
IDENT			FLAGS	FRAC	AGMENT OFFSET		
TTL TYPE			HEADER CHECKSUM				
SOURCE IP ADDRESS							
DESTINATION IP ADDRESS							
IP OPTIONS (MAY BE OMITTED) PADDING							
BEGINNING OF PAYLOAD (DATA)							

Addresses In The Header

- SOURCE is the address of original source
- DESTINATION is the address of ultimate destination

IP Versions

- Version field in header defines version of datagram
- Internet currently uses version 4 of IP, IPv4
- Preceding figure is the IPv4 datagram format
- IPv6 discussed later in the course

Datagram Encapsulation

- Datagram encapsulated in network frame
- Network hardware treats datagram as data
- Frame type field identifies contents as datagram
 - Set by sending computer
 - Tested by receiving computer

Datagram Encapsulation For Ethernet

- Ethernet header contains Ethernet hardware addresses
- Ethernet type field set to 0x0800

Ethernet Frame Format

Preamble	Address		Frame Type	Frame Data	CRC	
8 octets	6 octets	6 octets	2 octets	46-1500 octets	4 octets	

- Header format fixed (Destination, Source, Type fields)
- Frame data size can vary from packet to packet
 - Maximum 1500 octets
 - Minimum 46 octets
- Preamble and CRC removed by framer hardware before frame stored in computer's memory

Datagram Encapsulated In Ethernet Frame

```
02 07 01 00 27 ba 08 00 2b 0d 44 a7 08 00 45 00 00 54 82 68 00 00 ff 01 35 21 80 0a 02 03 80 0a 02 08 08 00 73 0b d4 6d 00 00 04 3b 8c 28 28 20 0d 00 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e 1f 20 21 22 23 24 25 26 27 28 29 2a 2b 2c 2d 2e 2f 30 31 32 33 34 35 36 37
```

- 20-octet IP header follows Ethernet header
- IP source: 128.10.2.3 (800a0203)
- IP destination: 128.10.2.8 (800a0208)
- IP type: 01 (ICMP)

Standards For Encapsulation

- TCP/IP protocols define encapsulation for each possible type of network hardware
 - Ethernet
 - Frame Relay
 - Others

Encapsulation Over Serial Networks

- Serial hardware transfers stream of octets
 - Leased serial data line
 - Dialup telephone connection
- Encapsulation of IP on serial network
 - Implemented by software
 - Both ends must agree
- Most common standards: Point to Point Protocol (PPP)

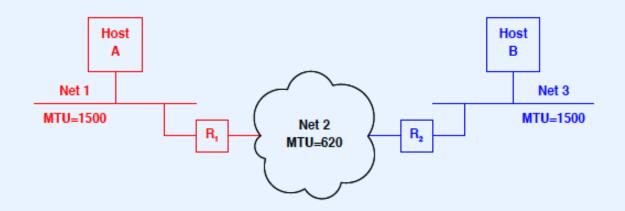
Encapsulation For Avian Carriers (RFC 1149)

- Characteristics of avian carrier
 - Low throughput
 - High delay
 - Low altitude
 - Point-to-point communication
 - Intrinsic collision avoidance
- Encapsulation
 - Write in hexadecimal on scroll of paper
 - Attach to bird's leg with duct tape
- For an implementation see

http://www.blug.linux.no/rfc1149

A Potential Problem

- A datagram can contain up to 65535 total octets (including header)
- Network hardware limits maximum size of frame (e.g., Ethernet limited to 1500 octets)
 - Known as the network Maximum Transmission Unit (MTU)
- Question: how is encapsulation handled if datagram exceeds network MTU?


Possible Ways To Accommodate Networks With Differing MTUs

- Force datagram to be less than smallest possible MTU
 - Inefficient
 - Cannot know minimum MTU
- Hide the network MTU and accommodate arbitrary datagram size

Accommodating Large Datagrams

- Cannot send large datagram in single frame
- Solution
 - Divide datagram into pieces
 - Send each piece in a frame
 - Called datagram fragmentation

Illustration Of When Fragmentation Needed

- Hosts A and B send datagrams of up to 1500 octets
- Router R₁ fragments large datagrams from Host A before sending over Net 2
- Router R₂ fragments large datagrams from Host B before sending over Net 2

Datagram Fragmentation

- Performed by routers
- Divides datagram into several, smaller datagrams called fragments
- Fragment uses same header format as datagram
- Each fragment forwarded independently

Illustration Of Fragmentation

Original datagram data₁ data, data₂ Header 600 bytes 600 bytes 200 bytes fragment #1 (offset of 0) Header₁ data₁ fragment #2 (offset of 600) Header₂ data₂ fragment #3 (offset of 1200) Header₃ data₃

- Offset specifies where data belongs in original datagram
- Offset actually stored as multiples of 8 octets
- MORE FRAGMENTS bit turned off in header of fragment #3

Fragmenting A Fragment

- Fragment can be further fragmented
- Occurs when fragment reaches an even-smaller MTU
- Discussion: which fields of the datagram header are used, and what is the algorithm?

Reassembly

- Ultimate destination puts fragments back together
 - Key concept!
 - Needed in a connectionless Internet
- Known as *reassembly*
- No need to reassemble subfragments first
- Timer used to ensure all fragments arrive
 - Timer started when first fragment arrives
 - If timer expires, entire datagram discarded

Time To Live

- TTL field of datagram header decremented at each hop (i.e., each router)
- If TTL reaches zero, datagram discarded
- Prevents datagrams from looping indefinitely (in case forwarding error introduces loop)
- IETF recommends initial value of 255 (max)

Checksum Field In Datagram Header

- 16-bit 1's complement checksum
- Over IP header only!
- Recomputed at each hop

IP Options

- Seldom used
- Primarily for debugging
- Only some options copied into fragments
- Are variable length
- Note: padding needed because header length measured in 32-bit multiples
- Option starts with option code octet

Option Code Octet

0 1 2 3 4 5 6 7

COPY OPTION CLASS OPTION NUMBER

Option Class	Meaning		
0	Datagram or network control		
1	Reserved for future use		
2	Debugging and measurement		
3	Reserved for future use		

IP Semantics

- IP uses best-effort delivery
 - Makes an attempt to deliver
 - Does not guarantee delivery
- In the Internet, routers become overrun or change routes, meaning that:
 - Datagrams can be lost
 - Datagrams can be duplicated
 - Datagrams can arrive out of order or scrambled
- Motivation: allow IP to operate over the widest possible variety of physical networks

Output From PING Program

```
PING venera.isi.edu (128.9.0.32): 64 data bytes
at 1.0000 second intervals

72 bytes from 128.9.0.32: icmp_seq=0. time=170. ms
72 bytes from 128.9.0.32: icmp_seq=1. time=150. ms
72 bytes from 128.9.0.32: icmp_seq=1. time=160. ms
72 bytes from 128.9.0.32: icmp_seq=2. time=160. ms
72 bytes from 128.9.0.32: icmp_seq=2. time=160. ms
72 bytes from 128.9.0.32: icmp_seq=3. time=160. ms
74 bytes from 128.9.0.32: icmp_seq=3. time=160. ms
75 bytes from 128.9.0.32: icmp_seq=3. time=160. ms
76 packets transmitted, 5 packets received,

-25% packet loss

round-trip (ms) min/avg/max = 150/160/170
```

Shows actual case of duplication

Summary

- Internet Protocol provides basic connectionless delivery service for the Internet
- IP defines *IP datagram* to be the format of packets on the Internet
- Datagram header
 - Has fixed fields
 - Specifies source, destination, and type
 - Allows options
- Datagram encapsulated in network frame for transmission

Summary (continued)

- Fragmentation
 - Needed when datagram larger than MTU
 - Usually performed by routers
 - Divides datagram into fragments
- Reassembly
 - Performed by ultimate destination
 - If some fragment(s) do not arrive, datagram discarded
- To accommodate all possible network hardware, IP does not require reliability (best-effort semantics)